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Abstract— Automatic detection of seizures from EEG
signals is an important problem of interest for clinical in-
stitutions. EEG is a temporal signal collected from multiple
spatial sources around the scalp. Efficient modeling of both
temporal and spatial information is important to identify
the seizures using EEG. In this paper, we propose a neural
network system using the time-delay neural network to
model temporal information (TDNN) and long short term
memory (LSTM) layer to model spatial information. On
the development subset of Temple University seizure data-
set, the proposed system achieved a sensitivity of 23.32%
with 11.13 false alarms in 24 hours.

I. INTRODUCTION

Epilepsy is a neurological disorder affecting about
50 million people worldwide [1]. Numerous epileptic
symptoms include psychological disorders like staring
spells, anxiety, fear, temporary confusion, uncontrol-
lable jerking movements of body parts, and loss of
consciousness. It is characterized by a prolonged pe-
culiar burst of neuronal activity within different regions
of the brain [2]. These signatures can be captured effi-
ciently by the scalp EEG signals. Trained neurologists
are currently required to detect the seizure from the
scalp EEG recordings. Using machine learning models
to identify and annotate seizures can bring down the
clinical processing time. The objective of the Neureka
2020 epilepsy challenge is to benchmark various ma-
chine learning algorithms detecting seizures from EEG
signals. In this paper, we propose a novel model using
time-delay neural networks (TDNNs) and long short
term memory (LSTM) to detect the seizures.

In the literature, various approaches have been pro-
posed to detect seizures from EEG signals. Some of
the inceptive models were based on SVM (Support
Vector Machine) without any temporal modeling [3–6].
Later, hidden Markov model-based systems [7, 8] that
model temporal information were proposed for seizure
detection. However, for modeling different channels in
EEG, either the features from different sensors were
concatenated [9] or a second stage fusion method was
used [8]. Recently deep learning models that use con-
volutional neural networks (CNNs) [10–13], recurrent
neural networks (RNNs) [14], and LSTMs [13] have
been proposed to detect seizure. 2D CNNs that convolve
across time and channels [12] are used to model both

temporal and spatial information. The system proposed
in this paper first models the temporal patterns using
TDNNs. The spatial signatures are then modeled using
an LSTM layer on the channel-wise outputs of the
TDNN layers. The proposed system was ranked 6th in
the N20E challenge.

The rest of the paper is organized as follows. Section II
provides the details of the proposed system and the
baseline systems. Section III provides the experimental
setup that was used to train and evaluate the proposed
system. Section IV discusses the results of the proposed
system. Finally, Section V concludes the paper.

II. PROPOSED SEIZURE DETECTION SYSTEM

Figure 1 shows a diagrammatic representation of the
proposed TDNN-LSTM system. The model takes as
input features of shape d×T from each channel C; d is
the feature vector dimension; T is the number of time
steps or frames. In this paper, linear frequency cepstral
coefficients (LFCC) computed for each channel is used
as the feature (see Section III-A). The first three layers
of the network operate at frame level for all the channels
using TDNNs (see Section II-A).

The fourth layer averages the hidden representation for
each channel across the input time frames. This average
pooling gives a single vector representation for every
input channel. Hence the fourth layer operates at the
channel level. In the fifth layer, the representations from
different channels are combined using an LSTM layer.
In this layer, the proposed network converts the given
EEG input of any duration into a fixed length vector
representation. The sixth and seventh layers are simple
feed-forward layers, and the final output layer performs
softmax over two nodes, one for seizure and the other
for background signal. The proposed TDNN seizure
detection system is a modified version of the TDNN
based DNN system used for EEG subject identification
in [15]. In Section II-A and II-B, we explain in detail
how the TDNN and LSTM layers are used to model
temporal and sequence information, respectively.

II-A. TDNN for modeling temporal dependency

TDNN layer does contextual modeling for each segment
of the EEG signal by convolving across time. TDNN
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layers are 1D convolution layers, where the context can
be interleaved. This interleaved convolution allows the
TDNNs to model longer context with fewer parameters
compared to traditional CNNs. In the proposed model
TDNN is used to model the temporal dependency in
seizure signals, irrespective of the channel.

II-B. LSTM for modeling spatial dependency

Given a input sequence of vectors, LSTM provide a
non-linear representation of the sequence by retaining
information from relevant vectors. In this paper, LSTM
layer is used to model a non-linear representation of
relevant TDNN embeddings form different channels to
detect seizure. We use a random sequence of channels
embedding (fixed across training and inference), as
input to the LSTM layer. Given, this input, our result
show that, the LSTM layer is able to encode details of
seizure segments from relavent channels in the EEG and
forget the insignificant ones.

The detailed configuration of the number of hidden
layers and the temporal and spatial context used in each
layer is given in Table 1. The proposed network takes as
input the features extracted from a multi-channel EEG
segment and outputs a probability of the corresponding
segment having a seizure. Owing to the average pooling
across time in the fourth layer, the model can process
EEG segments of variable lengths. The model is trained
using an equal number of examples from both the
seizure and the background class. A moving window
with a shift of one frame is used to detect the seizures
from a continuous recording of EEG. This moving
window produces a probability for each frame having
a seizure. These probabilities are post-processed and
used to get the final transcription of epileptic seizures
present in the recording. The experiment specific details
of how this system was trained and evaluated on N20E
challenge data is detailed in Section III.

Table 1. Layer-wise configuration of the proposed TDNN-
LSTM system. The input to the network is C matrices of
shape d ×T . C is the number of channels, d is dimension of
feature vector and T is number of frames. Layers 1−4 operate
for every channel. The output of layer 4 from each channel is
combined and given as input to layer 5.
Layer

No
Layer
Type

TDNN
Filter

Temporal
Context

Spatial
Context

Input
Size

Output
Size

1 TDNN {t-2,t,t+2} 5 0 d x T 256 x T

2 TDNN {t-4,t-2,t,
t-2,t-4} 13 0 256 x T 256 x T

3 TDNN {t} 13 0 256 x T 256 x T

4 Average
Pooling - T 0 256 x T 256 x 1

5 LSTM - T C 256 x C 128 x 11
6 FF - T C 128 x 1 32 x 1
7 FF - T C 32 x 1 32 x 1
8 Output - T C 32 x 1 2 x 1

Features(d)

Time (T)

Average pooling Average pooling Average pooling
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Figure 1. Diagrammatic representation of proposed TDNN-
LSTM network for seizure classification

III. EXPERIMENTAL SETUP

III-A. Features

To accurately detect seizures, the raw EEG signals
are first converted to features that retain the seizure’s
signatures. In the literature many features have been
used, which include, wavelet transform [3], fast-Fourier
transform spectrum (FFT) [4] and spectrogram extracted
using short-time Fourier transform (STFT) [16]. Linear
frequency cepstral coefficients (LFCC) computed by
applying DCT on linear filterbank energies have also
been used widely as features for detecting seizures
[8, 17, 18]. In this paper, we have experimented with
LFCC features computed using a window size and a
shift of 300 and 150 milliseconds, respectively. A total
of 15 coefficients computed between 0 Hz to 60 Hz
were used to train the proposed system.

III-B. Channels

The proposed seizure detection system has been exper-
imented with three different sets of EEG channels. The
first system used all the 19 channels shown in Figure 2-
A. These 19 channels were present in all the recordings
of the TUH-EEG seizure dataset. Further, to test the
proposed system with a reduced number of channels, we
developed a 9 channel and 4 channel system, as shown
in Figure 2-B and 2-C, respectively. These channels
were chosen such that they sample the different regions
of the scalp uniformly.
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Figure 2. EEG channel configuration used for seizure detec-
tion

III-C. Training

The seizure detection system proposed in this paper
is trained using the TUH-EEG seizure dataset [19]
(v.1.5.1). The training subset of this dataset consists of
a total of 592 subjects having about 47 hours of seizure
events. The further details of this dataset is given in
Table 2. It is to be noted that, in this dataset, the subjects
used for train, development, and evaluation are mutually
independent.

As discussed in Section II, the proposed system is a
classification network that accepts variable-length in-
puts. To augment the available data for seizures, the
EEG recordings were split into segments of size 20, 30,
and 40 seconds. The network was trained using all three
segment sizes. The number of examples available for
seizure and background EEG segments was equalized
by randomly sampling the latter.

III-D. Evaluation

The evaluation of the proposed system is done using the
development subset of the TUH EEG seizure dataset
(v1.5.1). In addition to the development subset, the
prediction of seizures on the evaluation subset were
submitted to the N20E challenge. Unlike the develop-
ment subset, the ground truth of the evaluation seizure
subset is not public and was evaluated by the challenge
organizers.

Moving windows of duration 20, 30, and 40 seconds
(similar to training phase) with a shift of one frame was

used to transcribe the EEG. For each frame, this step
gives three probabilities of the frame having a seizure
(one for each window size). These probabilities are
averaged to calculate the final score. The final seizure
segments are extracted using a threshold on this score
and post-processing to reduce false alarms.

Table 2. Details of TUH EEG Seizure dataset (v1.5.1)
Description Train Development Evaluation

Patients 592 50 53
Sessions 1185 238 152

Files 4597 1013 1023
No of Seizure events 2370 673

Seizure(secs) 168,139.23 58,445.11
Non-Seizures(secs) 2,540,144.77 554,786.89

Total(secs) 2,708,284.00 613,232.00

III-E. Evaluation Metrics

The predicted seizures were evaluated using a popular
scoring method in the seizure detection community,
called the Any-Overlap method (OVLP) scoring [20]. In
addition to OVLP, Time Aligned Event Scoring (TAES)
was also used. TAES is similar to OVLP, but it considers
the percentage overlap between the ground truth and
the hypothesis to weight the errors. The details of
these scoring methods can be found in [18]. Sensitivity,
precision, and the number of false alarms in 24 hours,
calculated using OVLP and TAES, are used as scoring
metrics to evaluate the proposed system.

IV. RESULTS AND DISCUSSION

The proposed TDNN-LSTM system outputs the score
of each frame having a seizure (see Section III-D). A
threshold score is used to determine the final traces
of seizures. As discussed in Section III-B, the pro-
posed seizure detection system was built using three
configurations with different number of channels. Sec-
tion IV-B discusses the results of all the three systems
using different thresholds on the development set. In
Section IV-C, the best system is selected and evaluated
on the evaluation set. In Section IV-D, we present
preliminary results on how our model performs for
different types of seizures.

IV-A. Sensitivity and precision at different thresholds

In pattern recognition, a binary prediction system is
evaluated using sensitivity (or recall) and precision. For
an ideal system, both sensitivity and precision should be
high. In Figures 3 and 4, the sensitivity and precision
are plotted for various thresholds, respectively. The
precision and sensitivity values were calculated using
the OVLP method.

The model detects many seizures when the threshold
is low, leading to poor precision. As the threshold is
increased, the precision improves, reducing the sensi-
tivity. In Figure 3, it can be observed that the 9 chan-
nels system has consistently given the best sensitivity.
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Figure 3. Sensitivity of the proposed systems at different
thresholds
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Figure 4. Precision of the proposed systems at different thresh-
olds

Compared to this in Figure 4, with 19 channels, the
system that has consistently given higher precision. The
performance of the 4 channel system compared with that
of the 9 or 19 channel system suggests that 4 channels
are adequate for seizure detection.

IV-B. Sensitivity vs false alarms
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Figure 5. Sensitivity vs false alarm for systems using differnt
number of channels

The results in Figures 3 and 4 were calculated using
different thresholds. As the threshold is increased, it is
observed that sensitivity drops and precision increases.
In the literature on EEG seizure detection, sensitivity,
and the number of false alarms in 24 hours is widely

used to evaluate systems [8, 17]. The best system should
give high sensitivity and low false alarms. Hence in
Figure 5, the false alarms per 24 hours at various
sensitivity levels are plotted for all the three systems.

Human performance on seizure detection is at 65%
sensitivity with 12 false alarms in 24 hours [21]. From
Figure 5, it can be clearly seen that the 9 channel system
has the highest sensitivity of 23.32% with 11.13 false
alarms in 24 hrs. This result shows that the proposed
model is able to generalize better just using 9 channels
rather than all the channels.

IV-C. System submitted to N20E challenge

The N20E challenge was ranked by sensitivity, false
alarms, and the number of channels. Hence for the final
system, we fixed the threshold such that systems with
all the three configurations of channels gave about 11.13
false alarms in 24 hours (Figure 5). The results of these
systems can be found in Tables 3. In addition to OVLP,
the TAES algorithm was also used to evaluate the final
system. The results of the corresponding final system
evaluated using TAES is given in Table 4.

Table 3. Result of proposed system using OVLP scoring
method

Sensitivity FA per 24 hrs
4-channel 18.87 11.55
9-channel 23.32 11.13
19-channel 21.69 10.56

Table 4. Results of proposed system using TAES scoring
method

Sensitivity FA per 24 hrs
4-channel 10.55 17.72
9-channel 11.96 17.17
19-channel 10.60 15.98

From both Tables 3 and 4, it can be seen that the 9 chan-
nels system has given better sensitivity at lower FA per
24 hours. Further, the N20E challenge was ranked by
the number of channels used in addition to sensitivity,
false alarms; hence, the 9 channels system was chosen
as the best. This system scored a sensitivity of 16% with
16 false alarm per 24 hours (using the TAES method)
on the held-out evaluation set and secured a rank of 6
out of 14 teams.

IV-D. Focal and Generalized seizures

In general, seizures can be classified as focal seizures
(FS) and generalized seizures (GS). Focal seizures are
the one which affects specific areas of the brain and
generalized seizures affect all the regions of the brain.

On analysing the TUH-EEG dataset, we see that the
training data comprises of 78.56% of FS and 20.59%
of GS, and the dev data consists of 57.8% of FS and
35.8% of GS. In this section, we report the sensitivity
of FS and GS separately on the development set using
the 9 channel system. From Figure 6, it is observed that
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Figure 6. Sensitivity vs threshold for focal, generalized and
combined seizures

FS has consistently achieved better sensitivity than GS
for different thresholds. These results clearly indicate
that focal seizures are modeled more robustly than
generalized seizures. This is due to the imbalance in
the training data.

V. CONCLUSION

In this paper, we proposed a novel DNN model using
TDNNs and LSTMs to detect seizures. It is an end-to-
end model that takes features from multiple channels
and provides a probability of input signal containing a
seizure. The proposed model first models the temporal
information using TDNNs and then models the spatial
data using LSTMs. Using just 9 channels, the proposed
model achieves a sensitivity of 23.32% with 11.13 FAs
in 24 hours. Reducing the number of channels to 4, the
model’s sensitivity gracefully dropped to 18% with the
same amount of FAs in 24 hours.

CODE AVAILABILITY

The implementation of the proposed TDNN-LSTM sys-
tem for seizure deduction is available at: https://github.
com/mariganeshkumar/eeg_seizure
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