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Abstract: Understanding the fundamental frequency and harmonic content of audio signals is crucial for many applications in
music analysis, including music transcription, audio synthesis, and genre identification. This study formulates a signal processing
approach combining Linear Prediction (LP) analysis and the Cent scale to characterize audio signals’ pitch and harmonic structure
accurately. Pitch tracking on the LP spectrum in the Cent scale provides more accurate and reliable pitch estimation, especially
in the presence of noise or overlapping harmonics. The Cent scale aligns the harmonics of different notes more closely, making
it easier to discern the correct pitch.

[Editor: —] https://doi.org/

Date: 3 October 2024

1. Introduction
In audio processing, accurate estimation of the melody contour (the fundamental frequency f0), which refers to identifying
the perceived pitch of musical notes in an audio signal, is crucial for music and speech analysis. Being a fundamental
auditory characteristic, f0 plays a pivotal role in several key aspects of Music Information Retrieval (MIR) tasks ranging
from melodic analysis (Koduri et al., 2012; Ranjani et al., 2011, 2019) and melody extraction (Rao and Rao, 2010; Salamon
and Gómez, 2012), music recommendation (Çataltepe and Altinel, 2007), chord recognition (Humphrey et al., 2012) and
music transcription (Benetos and Dixon, 2011; Benetos et al., 2018). Accurate f0 information enhances the capabilities of
MIR systems, enabling sophisticated analysis (Viraraghavan et al., 2017, 2020).

Due to various applications, different f0 detection methods have been explored, from traditional signal processing
to deep learning techniques. Signal processing techniques use time domain characteristics such as the autocorrelation
function (Rabiner, 1977; Slaney and Lyon, 1990) and zero crossing rate (Rabiner et al., 1976a), and spectral characteristics
(De Cheveigné and Kawahara, 2002; Mauch and Dixon, 2014; Xu et al., 2016). Short-term phase spectrum (Charpentier,
1986), and the sinusoid modeling property of the group delay function were also explored to estimate the f0 (Rajan and
Murthy, 2013). The cepstral analysis exploits the properties of f0 harmonics in the spectrum (Ahmadi and Spanias, 1999;
Noll, 1964, 1967), while machine learning (Drugman et al., 2018; Liang and Shu, 2022) and deep learning (Kim et al.,
2018; Sun et al., 2022; Wei et al., 2023) extracts f0 information from labeled audio and spectral data.

This paper proposes a novel approach by formulating the Linear Prediction (LP) all-pole spectrum modeling
on the Cent scale to analyze the f0 and harmonic structure in the context of Indian Art Music (IAM) audio. LP was
designed and developed primarily for speech coding (Gerson and Jasiuk, 1990; Spanias, 1994). Further, LP analysis has
been used for various applications in the speech community, such as speech enhancement (Yegnanarayana et al., 1999),
epoch extraction (Murty and Yegnanarayana, 2008), etc. LP-based features were used in f0 detection of voiced speech
(Prasanna and Yegnanarayana, 2004; Rabiner et al., 1976b), and LP-based cepstrum was combined with harmonic product
spectrum for f0 detection (Ding et al., 2006). LP analysis was also used to enhance the tracking of partials in music audio
processing (Lagrange et al., 2007), onset detection of music instruments (Glover et al., 2011; Gowriprasad and Murty,
2020; Marchi et al., 2014), and adaptive LP analysis was used in musical onset detection for instruments such as violin,
piano, etc. (Lee and Kuo, 2006).
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Fig. 1. Z-plane depiction of dilation of frequency in Cent scale.

The autoregressive all-pole model estimates the short-term power spectrum through LP analysis (Makhoul, 1975;
Viswanathan and Makhoul, 1975). Linear Prediction analysis computes the envelope of the spectrum by approximating
the spectrum by an all-pole model; the roots of the all-pole model correspond to regions of high energy concentration
in the signal. In speech, these regions correspond to the resonances of the vocal tract or formants. Perceptual LP is a
technique used to perceive speech that follows the Bark scale (Hermansky, 1990). Likewise, we propose another variant of
LP formulation on the Cent scale for perceiving music where the perception of music is related to f0, melody, and harmony.
The paper is organized as follows. The advantages of the Cent scale for music analysis are outlined to motivate the approach.
The Cent scale LP formulation is described and analyzed with various examples. The experimental results are analyzed and
discussed in the context of IAM.

2. Why LP on Cent Scale?
LP analysis of spectral envelope gives an equal approximation of the power spectrum P (ejω) across all frequencies within
the analysis band (Hermansky, 1990). This characteristic is at odds with human auditory perception. Human ears perceive
pitch in a logarithmic manner, i.e., equal ratios of frequencies are perceived as equal intervals of pitch. This logarithmic
perception explains the musical octaves, which signifies a doubling of frequency similar to human auditory perception
despite significant frequency differences between the notes. This becomes a primary drawback for all-pole modeling of the
harmonics in the music signal when the frequency scale is linear.

The Cent scale, a logarithmic pitch measurement system, offers several advantages over the regular linear fre-
quency scale. One of its primary benefits lies in its ability to represent equal perceptual pitch intervals with equal distances.
This means that two points on the Cent scale are separated by the same number of Cents, which sounds equidistant to the
human ear. In contrast, equal distances on the linear frequency scale do not correspond to equal perceptual intervals. When
using the Cent scale, transposing a musical interval (e.g., a perfect fifth) to a different key becomes a matter of adding or
subtracting a fixed number of Cents.

Fig. 1 depicts the poles corresponding to spectral peaks of a hypothetical signal in normal frequency and Cent
scales. The scenario considered is sampling freq fs = 16KHz, tonic f0 = 200Hz for demonstration purposes. Poles are
located at every 100Hz. We can observe in the linear frequency scale that the resolution is poor around the tonic and the
necessary octaves. On the Cent scale, the aforementioned limitations are well resolved. The blue solid line corresponds to
0 Cents, the tonic (200 Hz) or Sa in IAM. The green dashed line is the perfect 5th (700 Cents), which is 300 Hz, while
the dashed red line represents the upper Sa (1200 Cents). The two solid red lines correspond to −1200 and 2400 Cents,
enveloping the three octaves O1, O0, 0−1.

The Cent scale is especially useful in microtonal music, where pitches fall between the standard notes of the
chromatic scale. Indian music is rich with microtonal nuances (Agarwal et al., 2013); the tonic is usually decided on
stage, and tonal variations often fall between the notes of the Western equal-tempered scale. These microtonal intervals
can be precisely defined in Cents. Additionally, the Cent scale facilitates smooth pitch transpositions, as shifting intervals
to different keys involve straightforward Cents adjustments. Moreover, human ears are more sensitive to small frequency
differences in the middle range of the audible spectrum (Jacobson, 1951). The Cent scale offers a perceptually meaningful,
standardized, and versatile way of representing pitch differences, particularly in the middle range of the audible spectrum
and all-pole modeling on the Cent scale makes it advantageous in various musical and audio-related applications.

3. Cent Scale LP Formulation
Let s[n] be a windowed time domain signal, and S(ejω) is its Fourier spectrum. P (ejω) =| S(ejω) |2 is the magnitude
power spectrum. P (ejω) is known for −π ≤ ω ≤ π, and is real and even, i.e., P (ejω) = P (e−jω). This P (ejω) is linearly
sampled in frequency from − fs

2
≤ f ≤ fs

2
viewed via Discrete Fourier Transform, where fs is the sampling frequency.
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Fig. 2. Spectrograms of a Music Audio in Linear Frequency Scale (A), in Tonic Normalized Cent Scale (D), along with the LP
Spectrograms on them (B), (E), and Selective LP Spectrograms (C), (F)

ωc = 1200 ∗ log2(
ω

ω0
) (1)

The frequency scale is warped onto the Cent scale using Equation 1 with respect to a tonic ω0. Let the warped
power spectrum be P (ejωc) whose samples are spaced log-linearly. The P (ejωc) is now resampled linearly in the Cent
scale to obtain a linearly spaced power spectrum in the Cent scale P (ejωclin ). Cubic-spline interpolation is used to replace
missing values in the spectrum. Now the task is to fit P (ejωclin ) in a optimal manner by an all-pole spectrum P̂ (ejωclin ),
which is modelled as

P̂ (ejωclin ) =
G2

| A(ejΩ) |2 =
G2

| 1 +
∑p

k=1 ake
−jkωclin |2

(2)

A(ejΩ) is called the inverse filter, p is the number of poles in the LP model spectrum, and G is a constant gain
factor. Now, given P (ejωclin ) and number of poles p, the task is to determine the parameters ak, ∀ 1 ≤ k ≤ p and G.
The Autocorrelation method of all-pole spectral modeling is used to approximate the spectrum P (ejωclin ). The power
spectrum’s inverse DFT (IDFT) yields the autocorrelation function dual. The first k + 1 autocorrelation values are used to
solve the Yule-Walker equations for the autoregressive coefficients of the k th-order all-pole model. The spectral all-pole
modeling details are sufficiently well described (Makhoul, 1975). Algorithm 1 outlines the steps of LP formulation on the
Cent scale.

3.1 Selective LP Formulation
The spectral LP formulation can be generalized to fit a selected portion of the spectrum as described in (Makhoul, 1975).
The three octaves of the Cent spectrum around the tonic frequency ωl

c = −1200 to ωh
c = 2400 Cents are chosen and

matched using spectral LP formulation. The selected region is mapped onto the unit circle such that ωl
c → 0 and ωh

c → π
(the arrow is read “mapped into”), and the procedure outlined in (Makhoul, 1975) is followed.

ALGORITHM 1: LP formulation on Cent scale: Implementation

1: Transform the audio frame to power spectrum using FFT.
2: Convert the linear frequency axis to the Cent scale using Equation 1.
3: Cubic spline interpolation for linear sampling in Cent scale.
4: Get double-sided power spectrum (DSPS).
5: Compute Inverse FFT of DSPS to get the Autocorrelation function ACF.
6: Compute k of LP coefficients aks from the first k + 1 number of ACF-values (using Levinson-Durbin recursion).
7: Compute the LP spectrum from G and aks using Eqn 2.

3.2 Pitch Estimation
The peaks of the LP spectrum represent the resonances and harmonics. One of the peaks corresponds to the pitch. Estimating
the peak locations from a discrete spectrum may compromise resolution, as the number of bins limits the spectral resolution.
LP spectrum is an all-pole model where poles model the spectral peaks. LP offers the advantage of computing precise pitch
and harmonic values directly from the pole angles of the denominator polynomial [1, aks] of Equation 2. Since we have a
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ALGORITHM 2: Selective LP formulation and Pitch Detection

1: Select the analysis band interval [ωl
c to ωh

c ] [-1200 to 2400] three octaves in our case from Step 3, Algorithm 1.
2: Get DSPS for the selected spectrum.
3: Compute aks and G as stated in Algorithm 1
4: Compute the pole angles from the LP coefficients – denominator [1, aks] polynomial of P̂ (ωclin).
5: Convert back to Cent values from the pole angles using Equation 3 that corresponds to spectral peaks
6: The first peak lying inside the two octaves is considered as pitch.

mapping from the pole angle to the Cent value (Equation 3), we can estimate the Cent value with high precision, eliminating
the need for additional peak-picking processes on the LP spectrum. Further, the first pole in the [−1200, 2400] range is
considered the pitch. The pitch value in frequency can be obtained via the inverse of Equation 1. Algorithm 2 outlines the
steps of selective LP formulation and pitch computation.

ωcent = [(ωh
c − ωl

c) ∗ (∠pole/π)]− ωl
c (3)

4. Analysis
Fig. 2 depicts different spectrograms of a music signal. Fig. 2-(A) shows the regular short-time Fourier spectrum. As the
signal is sampled at 16KHz, the frequency range is 8KHz, but it is displayed only up to 2000 Hz (in the case of subplots A,
B, and C) for better visibility of the pitch and harmonics in the low-frequency region. The harmonics are seen equispaced
on the frequency axis, and the desired pitch track also has a low resolution when analyzed in the entire spectrum. The
horizontal lines corresponding to the background drone can be observed (denoted by an ellipse E1 and E2).

We can also observe that around 25 seconds, the 3rd and 4th harmonics have more energy and emphasis than the
actual fundamental frequency track. The spectrum also emphasizes the timbre associated with the music, thus making it
difficult to detect pitch tracks. Fig. 2-(D) shows the spectrogram in the tonic normalized Cent scale. Here, we can observe
that the necessary pitch contour and the octaves have higher resolution. Unlike in the regular frequency scale, the pitch
variation distance (vibrato) in the Cent scale is constant across the octaves; this is seen around 10s. We can also observe the
background percussion strokes (E3) and the drone (E2).

Fig. 2-(B), and (E) depict the all-pole spectrogram with 30 LP coefficients modeling the entire regular spectrum
[0 to 8000 Hz] and Cent STFT [-4580 to 6221 Cents], respectively. All the Cent scale spectrogram plots (i.e., D, E,
F) are displayed in the range [-1300 to 2500 Cents]. The all-pole model gives the spectral envelope where the major
spectral peaks are modeled with poles, smoothing out the finer spectral characteristics. It is observed that the minor spectral
characteristics corresponding to the background drone and the percussion strokes have been smoothed out, enhancing the
f0 track. Moreover, the higher-order harmonics are masked while the f0 track is enhanced in the lower frequency region.
Nevertheless, the finer details of the f0 track are also masked out in the (B) LP spectrogram derived from the STFT. In (E),
the finer f0 details are retained and enhanced, and the percussive strokes are still present (E4).

Fig. 2 (C) and (F) show the selective LP spectrogram on regular STFT and Cent scale, respectively, as described
in Section 3.1 with 8 LP coefficients. The analysis band of selective LP in the linear spectrum is from 0 to 2000 Hz, whereas
it is from -1200 to 2400 Cents in the Cent spectrum, corresponding to three octaves in music. Even with a lower order of LP
(eight), the f0 track is emphasized in the case of selective LP due to limiting the analysis band and having higher resolution.

4.1 Performance with respect to LP order
Fig. 3 depicts the linear spectrum (A, C), tonic normalized Cent spectrum (B, D), and their corresponding LP spectrum
with different orders for an audio frame. The linear spectrum is visualized from 0 to 5000 Hz. The Cent spectrum is
visualized from -2000 Cents to 5000 Cents, where zero Cents corresponds to tonic frequency. Subplots A and B depict the
LP spectrum over the full spectrum on the linear and Cent scales, respectively. The subplots C and D depict the selective
LP spectrogram computed on the desired analysis band (0 to 2000 Hz in linear spectrum, -1200 to 2400 Cents in Central
spectrum).

The comparison between LP spectra on linear and Cent scales reveals interesting findings. On a linear frequency
scale Fig. 3 (A, C), the LP spectrum could not resolve the peaks corresponding to percussion strokes (P1) and f0 (P2),
whereas the Cent scale (B, D) showcases these peaks distinctly. Remarkably, the LP spectrum exhibits clear peaks at f0
locations, especially when using the same number of coefficients, offering a detailed representation on the Cent scale.
Notably, selective LP spectrum peaks are sharper even with fewer coefficients. Employing just 8 LP coefficients in selective
LP (D) produces a spectral fit comparable to 30 to 40 LP coefficients in the entire LP spectrum (B). These observations
underscore the efficiency and precision of the Cent scale in capturing essential spectral information, even with reduced
computational complexity.
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Fig. 3. Comparing LP Spectrum with different orders on linear (A, C) and Cent spectrum (B, D). (A) LP Spectrums on the full range of
the linear spectrum. (B) LP Spectrums on the full range of the Cent spectrum. (C) Selective LP Spectrums on the linear spectrum range [0
to 2000Hz]. (D) Selective LP Spectrums on the Cent spectrum range [-1200 to 2400 cents].

Table 1. Performance Scores

Dataset Saraga HM Saraga CM Synth CM

Metric RCA RPA RCA RPA RCA RPA

Yin 76.6 71.4 75.4 69.1 59.6 59.4

Selec LP-Cent 83.4 74.5 79.6 71.9 67.1 65.7

5. Evaluation
The proposed method is evaluated on the Hindustani (Saraga HM) and Carnatic (Saraga CM) subsets of the IAM dataset
(Bozkurt et al., 2018) and SCMS Carnatic music (Synth CM) dataset (Plaja-Roglans et al., 2023). All the audios are
sampled to 22500 Hz and used for evaluation. Tonic for the Synth CM dataset is extracted using the methods proposed in
(Genı́s Plaja-Roglans and Thomas Nuttall and Xavier Serra, 2023; Gulati et al., 2014). The f0 detection is performed only
on the vocal regions after employing Voice activity detection (VAD). Widely used evaluation metrics such as Raw Chroma
Accuracy (RCA) and Raw Pitch Accuracy (RPA) with 50 cent thresholds (Salamon et al., 2014) are used for evaluation.
These metrics quantify the percentage of frames where algorithmic outputs match with ground truth within a quarter-tone
margin. Evaluation metrics are computed using the reference implementation from mir-eval (Raffel et al., 2014).

Table 1 shows the performance scores of our proposed method and an established signal processing approach for
music - Yin (De Cheveigné and Kawahara, 2002). The proposed selective LP uses only 6 LP coefficients, along with the
parameters mentioned in Section 3.1, using 100 ms frame length and 10 ms frameshift. We used the Yin approach with the
default parameter settings in Librosa library (McFee et al., 2015), which uses a frame length of 2048 samples. The ground
truth for Saraga - HM and CM was originally computed using Melodia (Salamon and Gómez, 2012). The results show that
the Selective LP method performs better than Yin (De Cheveigné and Kawahara, 2002). The scores are higher in the case
of Saraga HM than the Saraga CM and Synth CM, as the CM has more rapid melodic changes and vibrato. Fig. 4 depicts
an example of f0 extracted from the proposed selective LP method on an Indian music excerpt using only 6 LP coefficients
and with the parameters mentioned in Section 3.1.

Selective LP on a Cent scale is a model-based, unsupervised technique that runs on a single CPU machine with
less computational power. The selective LP method is handy for real-time f0 computation. Selective LP worked efficiently
even with nominal changes in tonic values, as the change in tonic value essentially shifts the Cent spectrum. With the
one-to-one transformation (Equation 1), we can get correct f0 values in Hz even if the peaks are shifted in the Cent scale.
The selective LP method can potentially be used as a preprocessing step, enhancing the necessary portion of the melodic
contours for further analysis.

6. Conclusion
This paper proposed a novel adaptation of LP all-pole modeling on the Cent spectrum that can be used for enhanced f0
detection. We can achieve greater precision in f0 estimation, especially in scenarios involving musical instruments with
continuous f0 glides and microtonal nuances. Experimental results demonstrate the effectiveness of the Cent scale and
LP analysis in capturing the f0, even in the presence of spectral complexities. The approximate tonic value is the only
requirement for the task. The spectral LP implementation in the python has been shared for research purposes1.
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Fig. 4. Fundamental frequency f0 track computed from Selective LP method on Indian vocal excerpt,
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