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Abstract. Breast ultrasound (BUS) imaging techniques have become
efficient tools for cancer diagnosis. Convolutional neural network (CNN)
based encoder-decoder architectures have been widely used for the au-
tomated segmentation of tumours in BUS images, assisting in breast
cancer diagnoses. However, these models have limitations in capturing
long-range dependencies. To overcome this limitation, various deep learn-
ing techniques, such as atrous convolution, attention mechanisms, and
transformer encoder-based models, have been introduced to capture long-
range dependencies in feature maps, improving segmentation accuracy
by considering larger receptive fields and global context. As modelling
techniques evolve, there is a shift towards more complex and intricate
designs. This study proposes a simple yet effective model that combines
UNet and Global Convolutional Network (GCN) architectures for breast
lesion segmentation. By leveraging the GCN block, our model captures
broader receptive fields with a simpler design strategy. We have demon-
strated the efficacy of our approach through various experiments, includ-
ing kernel size analysis, model component evaluation, and data prepro-
cessing assessment. The proposed model has been evaluated using four-
fold cross-validation with BUSI and Dataset-B datasets. Additionally,
models trained on both datasets have been validated with a blind test
dataset, where our model demonstrates better performance compared to
state-of-the-art methods, achieving a 4.9% and 6.7% improvement in In-
tersection over Union (IoU) score, respectively. The robustness analysis
and external validation experiments underscore the superior generaliza-
tion performance of our model in breast lesion segmentation tasks.
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1 Introduction

Breast cancer is a significant global health challenge, especially among women,
and it has high mortality rates [1]. Early detection of symptoms is crucial for
effective treatment. Breast ultrasound (BUS) imaging techniques have emerged
as efficient tools for cancer diagnosis. They are cost-effective, non-invasive, pro-
vide real-time results, and do not involve ionizing radiation [2]. Breast cancer is
classified into benign and malignant breast lesions, where benign breast lesions
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pose no threat to health, while malignant breast lesions are cancerous growths
that can spread throughout the body. The diagnosis of breast cancer involves
detection, segmentation, and classification stages. This study mainly focuses on
segmenting the lesion regions from BUS images to aid in the diagnosis of breast
cancer.

The medical field has seen significant advancements in the automation of
medical image segmentation, providing valuable assistance to clinicians in quan-
titative pathological assessment and diagnosis. Segmentation methods can broadly
divided into semi-automated and fully automated procedures based on the man-
ual intervention to fine-tune the breast lesion regions in BUS images [3,4]. A
comprehensive review of earlier methods is available in Xian et al. [5]. Fully au-
tomatic methods, exemplified by recent works such as Chen et al. [6] and Yan et
al. [7], eliminate the need for user intervention. These methods primarily lever-
age convolutional operations at each layer to extract local image features from
neighbouring pixels, enabling these models to predict the semantics of objects in
medical images. Among them, fully convolutional encoder-decoder-based models
like UNet [8] are extensively utilized. The UNet architecture comprises encoder
and decoder layers to extract features for predicting maps at image resolution.
Additionally, it uses skip connections between the encoder and decoder layers
to preserve the spatial structure, enabling precise object localization. The effec-
tiveness of the UNet architecture is evident in its state-of-the-art performances,
particularly with small medical image datasets, owing to its compact parame-
terization and encoder-decoder design. Variants of the UNet model are widely
adopted in biomedical image segmentation tasks [9,10,11,12,13].

Almajalid et al. introduced UNet for breast lesion segmentation from BUS
images [14]. Later, various UNet variants were proposed to refine segmentation
accuracy. These variants can be broadly categorized into four classes: multi-
scale UNet [15,6,16,17], attention-based UNet [18,19,7], deep supervised UNet
[20,21,22], and multi-module hybrid UNet [23,24]. Multiscale UNet models utilize
diverse convolutional kernel sizes to capture context information across differ-
ent receptive fields. Attention-based UNet models aim to capture global context
information for improved segmentation, including hybrid dilated convolution-
based attention UNet [7] and channel attention module [19]. Deep supervised
UNet ensures each stage contributes to the loss function, enforcing feature learn-
ing proximity to the ground truth at every stage of the model. Multi-module
hybrid UNet architectures integrate disparate, independent modules—such as
Tversky loss functions [20], residual inception depth-wise separable convolu-
tions, and hybrid pooling strategies (combining max pooling and spectral pool-
ing)—alongside cross-spatial attention filters [23] to further refine segmentation
predictions.

The convolution based encoder-decoder models encounter challenges associ-
ated with capturing long-range dependencies between pixels in the feature maps.
The convolutional operation often leads to inductive biases [25], limiting architec-
tures’ ability to model long-range feature dependencies effectively. Two strategies
are commonly employed to address the limitations, such as enlarging the recep-
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Fig. 1. The HAAM block architecture

Fig. 2. The GCN block architecture

tive field [26,27,28,29,30,31] and incorporating attention mechanisms [32,33,34].
Atrous convolution operations [25] are utilized to insert holes into convolution
kernels, preserving resolution and enlarging the receptive field. However, relying
solely on atrous convolution operations may not fully address challenges posed by
surrounding tissues and indistinct boundaries [15]. Attention mechanisms have
also been integrated to exploit long-range dependencies in CNNs [20,19,11,34].
These mechanisms enhance models’ capacity to capture intricate details and dis-
regard irrelevant features by dynamically focusing on relevant regions within the
input image [11]. As modelling choices evolve, there is a shift towards more com-
plex and intricate designs. Several studies have utilized a combination of atrous
convolution and attention mechanisms [6,7,24] to enhance tumour segmentation
in Breast Ultrasound (BUS) images, categorizing them as hybrid models.

A recent development in hybrid models for breast cancer segmentation is
the Adaptive Attention UNet (AAUNet)[6]. In this model, Chen et al. replaced
the conventional convolution layers in the UNet encoder and decoder blocks
with a Hybrid Adaptive Attention Module (HAAM) [6]. The intricate design of
the AAUNet model has demonstrated superior performance compared to state-
of-the-art semantic segmentation models with BUS images. The HAAM block,
a key component of AAUNet, effectively captures a larger receptive field by
employing multiple convolutions with varying receptive fields. The channel and
spatial attention modules use these output features to enhance the segmentation
accuracy. The HAAM block diagram is shown in Fig. 1. In contrast, our pro-
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posed approach presents a simpler architecture, leveraging the UNet framework
augmented with a Global Convolutional Network (GCN) [35]. The GCN block
primarily employs separable large filters to capture extensive receptive fields
while minimizing the number of parameters compared to standard convolutions.
The GCN has a symmetric structure to capture broader and better receptive
fields and is shown in Fig. 2. By integrating large receptive field information,
the GCN blocks allow superior segmentation predictions [35]. The combination
of UNet, Global Convolution Network (GCN), and Boundary Refinement (BR)
Module has been previously proposed for segmenting tongue medical images, as
demonstrated by [36]. GCN and BR blocks are employed to reduce the gap be-
tween localization and classification. Moreover, the GCN block is incorporated
randomly in the UNet model. In contrast, the purpose of the GCN block in our
model is to increase the receptive field.

The remainder of this paper is organised as follows: Section 2 discusses the
proposed segmentation model for BUS images. Section 3 outlines the datasets
and evaluation metrics utilized in the study. Experimental results and infer-
ences are presented in Section 4. Finally, Section 5 outlines the future scope and
conclusions drawn from the work.

2 Methodology

Our proposed model presents a UNet-based architecture including a Global Con-
volutional Network (GCN) block. Utilizing the UNet as its foundation, the pro-
posed architecture comprises five encoder layers, five decoder layers, and skip
connections between encoder and decoder for preserving spatial structure. GCN
block is used to expand its receptive field, empowering it to extract contextual
information effectively. The GCN block integrates into the skip connection struc-
ture through empirical analysis, enhancing its capacity to capture spatial rela-
tionships and semantic context in medical imaging data. This simple approach
utilises the strengths of GCN to improve segmentation performance, particularly
in tasks requiring capturing spatial and semantic relations. The proposed model
architecture is shown in Fig. 3.

2.1 UNet

The UNet, introduced by Ronneberger et al. in 2015 [8], is an encoder-decoder
architecture based on fully convolutional neural networks. In the UNet, the en-
coder layer initially captures high-frequency features and gradually refines them
for semantic extraction across subsequent encoder layers. Multiple encoder layers
with max-pooling downsample the image to low-resolution feature maps, which
are then passed to a bottleneck layer. These features are upsampled using de-
coder layers during the decoding process, and features from corresponding skip
connections are incorporated. Skip connections help preserve the spatial struc-
ture, while the upsampled features from decoder layers capture more semantic
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Fig. 3. The proposed UNet-GCN architecture

information, facilitating precise identification of regions of interest within med-
ical images. Each encoder and decoder layer consists of two convolution layers
(3x3 kernel), followed by Instance Normalization [37] and LeakyReLU activation
functions.

2.2 Global Convolutional Network (GCN)

Medical image segmentation models typically use 3× 3 kernels in convolutional
layers [8,13,14], primarily capturing local information and limiting larger recep-
tive fields in initial layers. While atrous convolution addresses this limitation
by employing dilated convolutions [6], it often provides only large, sparse recep-
tive fields [12]. A simpler approach would be using larger kernels in convolution,
which increases the receptive field and aids in handling significant variations in
lesion transformations in BUS images [15]. However, using large kernels increases
exponentially the number of parameters and GPU memory usage in each convo-
lution layer. GCN block [35] captures a larger receptive field with linear growth
in parameters and can easily be incorporated into existing architectures.

GCN approximates k×k convolutions using four low-rank convolutions in two
parallel branches. Each branch consists of two low-rank convolution kernel sizes
of k×1 followed by 1×k and vice versa. The dual branch gives equal precedence
to the horizontal and vertical kernels to capture the information. Traditional
k × k convolutions require k2 parameters, whereas parameters increase linearly
in GCN and need only 4k parameters. GCN replicates dense connections to the
input feature map within the receptive field of k × k, which helps handle large
variations of transformations. GCN approach helps to increase the receptive field
in the early stages while reducing overall parameter growth in the model. Self-
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Table 1. Different image preprocessing methods employed in the Data augmentation
process.

Image Preprocessing Description

Identity Returns the original image.
Gaussian blur Blur the image with a Gaussian kernel.

Equalize Histogram Equalization
Contrast Adjusts the contrast of the image by [0.05, 0.95].

Brightness Adjusts the brightness of the image by [0.05, 0.95]
Random Flip Horizontally flips the image with a probability of 0.5.

attention cannot be used in early layers to capture larger contexts due to the
exponential increase in GPU memory, a challenge mitigated by GCN blocks.
The optimal position of GCN within the backbone network and the kernel sizes
of the GCN block are determined empirically, as detailed in Section 4.1, and
Section 4.2. The block diagram of GCN is shown in Fig. 2.

2.3 Preprocessing BUS images

Ultrasound images often suffer from low signal-to-noise ratio (SNR) and vari-
ous artefacts like speckle noise, reverberations, and acoustic shadowing, which
degrade image quality [38]. Image preprocessing techniques are commonly em-
ployed to enhance BUS images and their quality [38]. Image preprocessing meth-
ods like contrast enhancement, brightness adjustment, Gaussian blurring and
histogram equalization are employed in our work. Gaussian blurring removes the
high-frequency noise and preserves the structure and edges in the image. His-
togram equalization [39] redistributes the intensity values across the histogram
to enhance the quality of the image. This process effectively stretches the in-
tensity levels, making the image appear more visually appealing with improved
contrast and detail. These preprocessing methods are integrated into the data
augmentation, as detailed in Table 1. Specifically, we employ six image transfor-
mations, with three randomly selected transformations applied to each image in
the batch during training. Such augmentation strategies have been demonstrated
to enhance model performance in semantic segmentation tasks significantly [40].

2.4 Model settings

All the images are reshaped into 256x256 pixels before being input into the
proposed model. During model training, a stratified batch (equal number of
images from the breast lesion class and normal class) is used to avoid bias in the
class imbalance dataset [41]. Binary cross entropy [42] is employed as the loss
function.

LBCE = −
∑
(i,j)

GT (i, j) ∗ log(PD(i, j)) + (1−GT (i, j)) ∗ (1− log(PD(i, j)))
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where GT (i, j) ∈ [0, 1] denotes the ground-truth mask (i, j), PD(i, j) ∈ [0, 1]
represents the predict masks. Adam optimizer with a learning rate of 0.0001
is used for model optimization. The model is trained for 100 epochs with a
batch size of 16. The parameters of the model are optimized on a validation
set. Balanced data from both normal and lesion classes are used for training to
maintain fairness. The code is written in PyTorch [43], and all experiments are
conducted using two GeForce GTX 1080 Titans with an overall 24 GB GPU
memory.

3 Datasets and Evaluation metrics

3.1 BUS Dataset

The BUSI dataset, collected at Baheya Hospital for Early Detection & Treat-
ment of Women’s Cancer, Cairo, Egypt, in 2018 [44], consists of 780 BUS images
obtained from 600 patients aged 25 to 75 years. The dataset encompasses three
distinct classes of BUS images: benign (487 images), malignant (210 images),
and normal (133 images). Imaging data was captured using the LOGIQ E9 ul-
trasound and LOGIQ E9 Agile ultrasound systems. Following the acquisition,
skilled radiologists preprocessed the images to delineate lesion regions and elim-
inate extraneous areas. Subsequently, the images were converted to PNG format
for standardized analysis.

Dataset-B [45] consists of 163 images, including 110 benign images and 53 ma-
lignant images. This dataset was captured using the Siemens ACUSON Sequoia
C512 system at the UDIAT Diagnostic Centre of the Parc Tauĺı Corporation,
Sabadell, Spain. Additionally, the STU dataset [24] contains 42 BUS images and
corresponding masks. These images were acquired using the GE Voluson E10
Ultrasound Diagnostic System at Shantou First Affiliated Hospital, Guangdong
Province, China. While all images in the STU dataset depict lesions, they are
not explicitly classified as benign or malignant. The STU dataset is an external
validation (test) dataset for evaluating model performance.

3.2 Evaluation Metrics

Image segmentation evaluation metrics are helpful in assessing the effectiveness
of segmentation models. Five widely recognized metrics are used in our work: In-
tersection over Union (IoU), Dice similarity coefficient (Dice), Precision (Prec.),
Sensitivity (Sen.), and Specificity (Spec.). IoU is also known as the Jaccard in-
dex, which estimates the ratio of the intersection area between the prediction
and ground truth mask. The dice score is also referred to as the F1 score, which
estimates the ratio of twice the overlap between the prediction with ground
truth mask to the sum of their areas. IoU and DSC evaluate the spatial corre-
spondence between the predicted and ground truth masks, with higher values
indicating superior segmentation accuracy. Precision estimates the proportion
of correctly classified lesion pixels to the total number of lesion pixels predicted



8 Anand et al.

in the prediction mask, while Sensitivity measures the proportion of correctly
classified lesion pixels in the prediction mask to the ground truth mask. More-
over, Specificity assesses the proportion of correctly classified background pixels
in the prediction mask to the ground truth mask.

4 Experimental Settings and Results

This section presents a series of experiments to evaluate the performance of the
proposed and baseline models in breast cancer segmentation using BUS images.
An ablation study is conducted to understand the importance of GCN compo-
nents within the model architecture. We also investigate kernel size’s impact on
breast lesion segmentation in the GCN block. Another ablation study evaluates
the effect of data preprocessing techniques on BUS medical image segmentation.
We then present and discuss the segmentation results obtained with state-of-the-
art models using the BUSI and Dataset-B. All experiments are conducted using
four-fold cross-validation on the sorted dataset and employ internal shuffling for
uniformity. Finally, we assess our proposed and baseline models’ generalizability
using the unseen (Test) STU dataset. The STU dataset consists of two classes,
tumour and normal, and the trained models predict whether each pixel in the
BUS image is normal or a tumour.

4.1 GCN Position

The GCN is an independent block used to capture larger receptive fields and
can be easily integrated into the UNet architecture. We explore three variants:
Model A, where the GCN block is within the skip connection; Model B, where
it’s placed between each encoder and decoder block; and Model C, where it
replaces each convolution in both encoder and decoder blocks (except for the
upsampling convolution). Table 2 shows the performance of these variants, with
skip connections proving to be the optimal choice in terms of performance and
is employed for further analysis.

Table 2. Segmentation results for GCN at different positions in the proposed network
with BUSI dataset. Models A, B, and C are defined in Section 4.1.

Models
BUSI

IoU Dice Sensitivity Precision Specificity

Model A 61.05 ±1.31 75.69 ±1.00 72.13 ±1.35 78.29 ±2.98 98.28 ±0.31

Model B 60.28 ±1.55 75.07 ±1.21 72.12 ±1.39 78.41 ±3.39 98.26 ±0.40

Model C 59.96 ±1.07 74.79 ±0.83 70.98 ±2.97 79.06 ±3.47 97.36 ±0.44
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4.2 Kernel Size

Using larger kernels enables the model to have larger receptive fields, enhancing
its ability to predict lesions effectively. In an ablation study, we tested three
different kernel sizes (3, 5, and 7) for the k parameter in the GCN, ensuring
uniformity across all GCN kernels. We opt for a maximum kernel size of 7,
restricted by the smallest feature size of 8× 8 within the proposed network. It is
observed in Table 3 that the larger kernel is progressively improving the model’s
segmentation prediction.

Table 3. Segmentation results for different kernels used in the GCN block with BUSI
dataset.

Kernel Size (k)
BUSI

IoU Dice Sensitivity Precision Specificity

7 61.05 ±1.31 75.69 ±1.00 72.13 ±1.35 78.29 ±2.98 98.28 ±0.31

5 60.51 ±0.81 75.26 ±0.66 72.04 ±3.09 79.08 ±3.65 98.29 ±0.49

3 59.44 ±1.10 74.72 ±0.84 72.37 ±2.64 76.69 ±1.53 98.06 ±0.23

4.3 Data augmentation

BUS images are characterised by noise and low quality, often exhibiting low con-
trast. We apply domain knowledge-based data augmentation methods to address
these issues and enhance image perception to improve contrast and reduce noise.
Rather than adding domain-based augmentation directly, random augmentation
settings are used for a superior augmentation approach [40]. To verify the claim
that such a data augmentation method improves the perception quality and aids
in the prediction of maps by the network, we perform an ablation study involving
data augmentation techniques. We train our model with and without augmenta-
tion approaches and report its results in Table 4. The model trained with data
augmentation achieves superior Dice and IoU scores compared to methods that
do not utilise augmentation.

Table 4. Segmentation results of the proposed model with and without data augmen-
tation using BUSI dataset.

Data
Augmentation

BUSI

IoU Dice Sensitivity Precision Specificity

✓ 61.05 ±1.31 75.69 ±1.00 72.13 ±1.35 78.29 ±2.98 98.28 ±0.31

✗ 59.31 ±0.59 74.28 ±0.50 70.59 ±1.29 78.53 ±2.24 98.29 ±0.22
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Fig. 4. The segmentation results of different methods on breast ultrasound images.
The first column represents the input image. The remaining columns represent the
corresponding mask predicted by the models.

Table 5. The cross-fold validation segmentation results for the baseline and proposed
model. Sen, Prec, and Spec represent sensitivity, precision and specificity, respectively.
NoP represents the number of parameters of the model, and the values are expressed
in millions. FLOPS represents the Floating-point operations per second, and values are
denoted in gigabits per second (Gbps).

Models
BUSI Dataset-B

NoP FLOPS
IoU Dice Sen. Prec. Spec. IoU Dice Sen. Prec. Spec.

UNet 53.82
±2.59

69.75
±2.10

65.96
±4.67

74.07
±4.49

97.98
±0.57

60.83
±3.29

75.62
±2.62

68.32
±3.35

84.70
±5.85

99.37
±0.35

39 27.78

Attention UNet 57.08
±1.12

72.57
±0.90

70.89
±3.15

74.65
±3.99

97.87
±0.57

69.98
±2.68

82.29
±1.82

78.48
±5.03

86.96
±5.75

99.41
±0.28

34 66.69

UNet ++ 57.14
±0.88

72.60
±2.21

69.15
±2.82

76.53
±3.59

98.16
±0.44

68.14
±2.17

80.99
±1.61

80.35
±5.75

82.25
±5.86

99.14
±0.37

47 199.85

UNet 3+ 56.93
±0.95

72.43
±0.79

68.45
±2.09

77.27
±2.15

98.20
±0.29

69.86
±2.29

82.23
±1.53

78.02
±4.03

87.06
±4.01

99.39
±0.17

26 198.03

SegNet 57.55
±1.44

72.93
±1.18

68.04
±2.85

78.73
±2.47

98.34
±0.30

68.38
±2.54

81.20
±1.88

77.75
±2.97

85.23
±3.72

99.32
±0.20

29 40.82

AAUNet 59.90
±2.24

74.72
±1.76

69.62
±2.99

80.68
±5.59

98.52
±0.62

70.02
±2.83

82.34
±1.93

78.42
±3.76

86.70
±4.15

99.40
±0.26

43 85.33

Proposed Method 61.05
±1.31

75.69
±1.00

72.13
±1.35

78.29
±2.98

98.28
±0.31

72.11
±1.92

83.77
±1.29

83.96
±3.46

83.72
±2.82

99.02
±0.18

80 37.08
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4.4 Comparison with state-of-the-art models

We have compared approaches like AAUNet, designed explicitly for breast lesion
segmentation, with our proposed model performance. The other state-of-the-art
medical segmentation methods include UNet [8], SegNet [46], Attention UNet
[11], UNet++ [13], and UNet3+ [9] are also assessed. We have used the officially
available repositories of these models to reproduce the results on the BUSI and
other datasets. All models are performed four-fold cross-validation with data
augmentation, and the results are shown in Table. 5. Models were trained sep-
arately with four-fold cross-validation with datasets BUSI and Dataset-B. Our
proposed model performs better than other state-of-the-art models regarding
IoU, Dice score, and sensitivity with BUSI and Dataset-B. Though the num-
ber of parameters is large, the number of Floating-point operations per second
(FLOPS) is lower, suggesting that our approach is simpler and requires no in-
tricate design. Visual outputs of the proposed model and other state-of-the-art
models are shown in Fig. 4. Our approach captures the better spatial structure
of the breast lesions when compared to other state-of-the-art models.

Table 6. The External validation segmentation results for the STU dataset with base-
line and proposed model trained with BUSI and Dataset-B. Sen, Prec, and Spec rep-
resent sensitivity, precision and specificity, respectively.

Models
BUSI Dataset-B

IoU Dice Sen. Prec. Spec. IoU Dice Sen. Prec. Spec.

UNet 69.77
±2.21

82.18
±1.54

79.11
±4.31

85.72
±2.82

98.16
±0.50

57.82
±6.78

73.09
±5.55

59.76
±7.54

94.92
±1.04

99.54
±0.14

Attention UNet 73.36
±3.69

84.60
±2.49

85.83
±0.65

83.48
±4.55

97.62
±0.79

68.43
±3.35

81.23
±2.32

72.71
±2.10

88.67
±3.48

99.12
±0.40

UNet ++ 74.02
±2.33

80.05
±10.90

83.18
±2.47

87.04
±1.16

98.29
±0.17

68.11
±2.77

81.01
±1.95

73.83
±4.41

90.08
±3.95

98.80
±0.57

UNet 3+ 71.63
±1.23

83.46
±0.84

81.65
±2.15

85.42
±1.62

98.07
±0.28

66.38
±1.90

79.78
±1.39

71.11
±1.49

92.25
±1.64

99.17
±0.21

SegNet 75.13
±0.62

85.80
±0.41

85.26
±2.22

86.45
±2.40

98.14
±0.44

68.30
±2.63

78.99
±1.92

69.30
±3.37

91.97
±1.90

99.15
±0.23

AAUNet 75.41
±3.22

85.96
±2.11

84.72
±2.52

87.29
±3.08

98.28
±0.47

70.06
±2.66

82.38
±1.86

74.35
±3.30

92.45
±0.59

99.16
±0.10

Proposed Method 79.08
±1.28

88.32
±0.80

87.43
±0.71

89.23
±1.12

98.59
±0.16

74.79
±0.39

85.58
±0.25

79.48
±1.94

92.78
±2.02

99.13
±0.28

4.5 External Validation

External validation is a critical step in assessing the generalizability and ro-
bustness of segmentation models. In our study, we used the STU dataset as an
external validation set. This dataset, acquired by different imaging systems and
from different geographical locations compared to BUSI and Dataset-B, serves
as an essential benchmark for evaluating our proposed model’s performance in
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real-world scenarios. Testing our model on this external dataset ensures its ef-
fective generalization to unseen data and different acquisition conditions. We
trained models using BUSI and Dataset-B separately and tested them with the
STU dataset to predict whether each pixel in the BUS image is normal or a
tumour. Our proposed model demonstrates better generalizability to the unseen
datasets than other models, with the results shown in Table 6.

5 Conclusions

Our study introduces a novel UNet-based model integrating GCN blocks in skip
connections to facilitate breast lesion segmentation in BUS images. Our pro-
posed model demonstrates superior performance compared to existing state-of-
the-art methods in this domain. Through several ablation studies, we explain the
significance of individual model components, providing insights into their con-
tributions to segmentation accuracy. Moreover, we emphasize the pivotal role
of image preprocessing in enhancing segmentation performance for BUS images.
Our model showcases robustness across unseen datasets. Looking ahead, we aim
to extend our model’s capabilities beyond segmentation to encompass compre-
hensive tasks such as cancer detection, identification, and segmentation within
a unified framework.
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